
A metadata action language

Keith Golden

NASA Ames Research Center

M/S 269-2

Moffett Field, CA 94035-1000

kgolden@ptolemy.arc.nasa.gov

May 3, 2001

Zot l zf !z5

Abstract

The data management problem comprises data processing and data tracking. Data

processing is the creation of new data based on existing data sources. Data tracking

consists of storing metadata descriptions of available data.

This paper addresses the data management problem by c_ting it as an AI plan-

ning problem. Actions are data-processing commands, plans are dataflow programs and

goals are metadata descriptions of desired data products. Data manipulation is simply

plan generation and execution, and a key component of data tracking is inferring the

effects of an observed plan. We introduce a new action language for data management

domains, called ADILM. _Ve discuss the connection between data processing and infor-

mation integration and show how a language for the latter must be modified to support

the former. The paper also discusses information gathering within a data-processing

framework, and show how ADLIM metadata expressions are a generalization of Local

Completeness.

1 Introduction

1.1 Tile NASA data management problem

z\ l)ig part ()f NASA's .job is ,lat_ n_anagement. Satellites, unmanned spacecraft, planetary

row,rs an,l observatories, for all their complexity, (:an all be viewed as remote sensors; their

sole purpose is to gather data, which are then processed, delivere(l to the scientific community

and the public, and archived. The data management problem is especially acute in the Earth

Sciences, where the data sets are large and diverse, and there is an-increasing demand for real-

time data processing in support of a wide range of scientific tasks (cite SensorWeb). Real-time
S'](lata processing in support of novel science goals is not feast)le with the current technology,

since a substantial amount of work is involved in acquiring the data and converting them to

the appropriate formats. These activities can be scripted, but the scripts themselves take

time to write and debug. Also, there is a tremendous problem in data tracking: keeping

track of what data exist, what the data represent, and where they are stored.

Figure 1 shows a typical data processing operation. Sets of images that were taken by

a black and white camera, through red, green and blue filters, are first combined into color

composite images. These images, each representing a narrow field of view, are then combined

into a mosaic, corresponding to a larger field of view. The mosaic is then compressed and put

on the web. Arcs in the figure represent dataflow. Data processing consists of constructing

and executing such datafiow programs to produce a desired result. Data tracking consists of

deriving a metadata description of data products produced by such programs, and storing

it in a database, to facilitate later data searches.

We address the data management problem by casting it as an AI planning problem. Ac-

tions are data-processing commands, plans are dataflow programs like Figure 1, and goals

are metadata descriptions of desired data products. Data manipulation is simply plan gen-

eration and execution, and a key component of data tracking is inferring the effects of an

observed plan. We introduce a new action language for data management domains, called

ADILM.

Although data tracking is the easier problem computationally, it places more demands on

the representation of data and the actions that manipulate data, since the system must be

able to generate correct and usable metadata descriptions for any given dataflow program,

regardless of how it was generated. For example, Collage [?] and MVP [?] both use planning

to automate data manipulation (in particular, image processing), but they do not automate

data tracking, and in fact neither uses a representation that is suitable for metadata gen-

eration. Both use an HTN representation, which allows them to avoid providing a detailed

causal theory of data processing. However, it is precisely this detailed causal theory that is

neede(l to determine the effects of arbitrary data-processing plans.

1.2 Roadmap

Tile remain(h,r of tile paper is organized as follows. Section 2 discusses the connection be-

tween data processing and in_brmation integration. Section 3 discusses how data-producing

actions are represente(l to facilitate reasoning about data-processing plans. Section 4 dis-

cusses the rel)reseutation of metadata. Section .5 discusses the representation of 'filter"

2

r 4,

Figure l: A dataflow plan. First, separate monochrome images taken through red, green

and blue filters are combined to form a color image. Then, these images are tiled to form

a mosaic. Finally, the flfll resolution image is archived and a JPEG-compressed version is

stored on a public website.

actions that transform data. Section 6 discusses the representation of actions that deliver

data to a destination. Section ?? discusses the representation of dataflow plans. Section 8

discusses how to reason about these plans. Section 7 discusses how to gather information in

a data-manipulation paradigm.

2 Data manipulation vs Information Integration

There has been substantial work in the area of planning for information integration. This

work can be broadly characterized as extracting information from a number of data sources

and combining the results in order to answer a user query. For example, if a user requests a

listing of all movies currently showing in San Francisco starring Jackie Chan, this query could

be answered by going to a web site, such as tile Internet Movie Database (imdb.com) to get a

list of movies starring Jackie Chan and another site, (such as www.sfgate.com/eguide/movies/playing

to find out which of those movies are showing in San Francisco. In this case, the data sources

are HTML documents and the information concerns movies, actors and theaters. An essen-

tial feature of this and other information-integration problems is that the interesting contents

of the data sources can be completely characterized in terms of a simple logical language,

such as SQL or Datalog. Although there are aspects of the HTML documents for these sites

that are not captured by the logical description, they are not relevant to the problem of

finding movie listings.

In information integration tasks, the end product is always information: once

information is extracted from data, th.e data can be discarded, since all .s'ubaequent

operation_e are on a logical representation of the reformation.

Dnta manipltlation concerns tasks like image processing and data swabbing (converting from

one d;tta format tO another). In these tasks, ([;tt;t files are processed by one or more programs

(filters) to pro_hu'e new (l_tt;t files. [n general, it is possible to describe the infi_rmation

colO,_thu'<lin t,lw _lata in ,_<_tlLf'logical l;mgun.ge,blLt these,h's.riptions ,lo trot COml>h'tely
:ItaL';tct+rize the+ +L+tl:a.

In ,tara manipulation ta._k.s, the end product is generally dat,t; information may

or may not be extracted from data files, and too.st operations act directly on the
_lata.

3 Two kinds of sensors
4.

data: information outp+Lt by a ,sensing device or organ that includes both us@d

and irrelevant or redundant information and must be proces.sed to be meaningful

-- Merriam-Webster OnLine (http:/,'m-w.com)

Since data come from sensors, a good place to start the discussion of representing data is how

to represent sensors. There are two types of sensors mentioned in the definition above. One

is a "sensing device," such as a Geiger counter or other scientific instrument, which produces

data that must in turn be sensed and interpreted. The other is a sense organ, such as an

eye, which feeds information directly into the brain.

Planners for information integration represent sensors as sense organs. For example, the

Internet Softbot [?] treats Unix commands like ls, which lists the files in a directory, as

sense organs. To represent that executing the action ls /bin reveals the name of every file

in /b±n, the Softbot encoding (in the SADL language I?]) is:

Vf 3n when 0n.dir(f, /b±n)) observe(name(f, n))

which translates to "The softbot will observe the name of every file in the directory /bin."

The observe annotation means that the appropriate propositions of the form name(f, n)

will be inserted into the agent's knowledge base when the action is executed. This is the

most direct and intuitive way to represent a sensor. What this encoding actually represents,

however, is not :l_s, but the combination of ls with a program (called a wrapper) to read

in and interpret its output. The wrapper itself is a "black box" to the planner; the planner

"knows" what information is contained in the output of :l.s, but knows nothing of how that

information is encoded. Thus, this representation is not suitable for data processing domains,

in which the data output itself is of interest.

A sensing device, in contrast, produces an output or result that depends on the state

of the world. This output may be perceived and interpreted to obtain information about

the world, but the interpretation depends on knowing how the output was produced. This

kind of indirect sensing, or testing, is exemplified by Moore's litmus paper example [?1- For

an excellent formal analysis of testing, see [?]. The main idea behind testing is to exploit

actions with conditional effects to obtain information about properties of the world that

are not directly perceptible (such as the acidity of a solution or the amount of radiation

emitted by some source). This strategy only works if the ontuome of the conditional effect

(such as the color of the litmus paper or the freqttency of clicks from the Ceiger counter)

is _lirectly percel)tible , or can in t_tru be detected via some other test. Thus, testing must

4

always 1,_,ttont_)_tt.in seinesenseorgan. In the litm_tsl)ap_r example, it. bottoms oilt when
the phot_msrf'fh'cte,[from t,he paper strike t,lv, retina, stimulating neurons in tlu, vislml

eorte×, pro_hu:ing the sensation of redn.es._ or blue:u:._s. The agorot then reasons backward

from its ca,lsa[theory to _letermine what the r(_(lness or l_l,u'ness says al)o,tt the aci_lity of
the sol,ltion.

The softbot analogue of the retina is working memory, so tlir¢,ct perception occurs when

the outpllt of a sensor is loade(I into working memory. Directly perceptible properties are

properties of the olttput that can be computed witho_lt resorting to any achtitional infi)rma-

tion abo_it the state of the outside world. Anything else nmst'f')e inferred from the known

causal relationship between the state of the and the contents of the data.

For example, the effect of ls discussed above would be written as

V f: file (parent.dir(f) = /bin) -+ contains-line(name(f), out)

This translates to "For each file in directory/bin, there is a line in the output that is equal

to the name of the file." The --+ is used instead of when (which is used in the SADL example

above) to indicate a conditional effect. In this example, the meaning of the two notations

is the same, but -+ has broader applicability as is discussed below. The predicate contains-

line (31, s2) means that string st appears in string s2, delimited by newlines. The truth

value of this predicate can be computed given only the strings st and s,_, thus satisfying the

requirements stated above for direct observability. The function parent.dir(f), on the other

hand, cannot be directly perceived, but once the softbot knows what strings appear in the

output out, it can infer what files are contained in the directory/bin.

There is a qualitative difference between predicates and fimctions like contains-line, which

are directly perceptible and those like parent.dir, which are not:

The flmction parent.dir is a fluent. That is, its value depends on the state of the world.

Knowing the value of f is not enough to know the value of parent.dir(f): it can be

different in different hypothetical states of the world and can change from time to time.

The relation contains-line is .static. Its value depends only on the values of its arguments,

and no change to the world can change its value. Furthermore, its value can easily

be computed. "Sensing" its value is reduced to loading its arguments into working

memory and performing a simple computation. There are no preconditions or side-

effects to such a computation, so an explicit sensing action is unnecessary; instead, we

can associate with each static predicate or fimction a procedure for determining its

value. Static predicates are sometimes called facts.

If we compare this approach to the approach used for inflmnation integration, it becomes

clear that the computation performed in reading in the output of a data-producing action,

executing procedures to determine the values of static predicates and inferring the wdues of

fluents is exactly what a wrapper does. What we've done is changed the wrapper from a

"black box" to a "white box," which is integrated into the reasoning process of the planner

itself. This change in representation gives the planner the ability to reason about actions

that manip_flate data, something that is not possible giw'n tit(.' "sense organ" representation

of infin'mation-prodlwing actions.

4 Representing metadata

The (qS'(:t ([(,scription of ls giwm above can be rewritt(,n in the equivalent form t

V f: file, n: fihmame (parent.dir(f) = /bin) A n = name(f) --+ contains-line(n,

o'ut)

This effect can be regarded ms a metadata description of tile output of Is. It contains two

vital c.omponents: ,.

l. the information contents of the data

2. how the infi)rmation is encoded in the data

The --+ relates the two. The symbol + does not merely denote implication (which we will

represent as "_"), since it involves a temporal element as well as a logical element. When it

appears in the form of a conditional effect, the --+ relates the truth value of the expression on

the left, hand side (LHS) before the action is ezecuted with the truth value of the expression

on the right hand side (RHS) after the action is executed. However, since the expression

on the RHS is static, the only time point of interest is that of the LHS. Thus, another

component of metadata is:

3. what time the information pertains to

For data-producing actions, this time is whenever the action is executed, so there is no need

to state it explicitly in the action description, but once the output has been produced, it is

necessary to keep track of what time it pertains to. For example, if a softbot is to produce

nightly backups, the night a given backup was made should be recorded.

For data goals, the time that the information pertains to is also of interest. As discussed

in [?1, failure to specify the time for which information is requested is the reason why a

goal of "tell me the color of the door" could achieved by painting the door blue and then

answering '%lue." If instead we ask "what is the current color of the door," painting the door

only obscures that information and does nothing to answer the question. The syntax of data

goals is the same as that of data-producing effects, except that goals can refer explicitly to

the time of interest for fluents on the LHS. This is done using an extra, optional argument

tbr each fluent. For example, to refer to the color of the door at 9am today, we can write c

= color(door, 9:00)). If no time is specified, it is assumed to be whenever the goal is given.

If a fltture time is specified, this is interpretect as a request to schedule a data-gathering

operation to be carried out when that time arrives.

Another difference between data-producing actions and data goals is that the goals must

specify what is to be clone with the data, such as the pathname of the file where the data

should be put. Note that pathname is a fluent, ms it must be, since storing the data to a file

changes the worhl. So another component of nwtadata is

_Throughout. this papor, "P --+ f(g(z))" is a shorthand for "P A(g = g(.r)) -+ f(8)" and "P _ (f(z) =
g(a'))" is a shorthan(l for "'P A(g - g(.r)) --+ (f(x) = g)."

G

!. where++l:hedata t'_'si_le

Although the location of the <La+t+ais specifie<l_s a fhtot+.t, no titue is given; fi_r goals, it, is

ass*lnle<l t_ I)e "as soon as possil_le" (as menti<med above, s<:hecl,lling fut*lre _lata-gath+,ring

op++rat, ions can be achieved by specifying a ['ltttlre 1;imo in the, LHS o_"rite goal); for tm,tadata

in t,ho agont's knowledge has. _, it is assllnwtl to be "right now," since anything else would
amount, to incorrect information about the worl_l.

4.1 Limited completeness assumption
6

We. make a limited form of the STRIPS assumption. We do not assume that all effects are

explicitly listed in data-producing effects, since it is impossible to account for all possible

effects. For example, concatenating together two files, neither of which is a valid GIF file

could produce a result that is a valid GIF file. We do require, however, that if any predicate is

used in the RHS of any effect or metadata description, then the description must be complete

with respect to that predicate. For example, the output of ls /bin cannot contain any lines

of text that are not the names of files in /bin. Any property that does not appear in the

RHS of a metadata description is considered to be "unknown.

4.2 Constraints

Many data processing domains require sophisticated constraint reasoning in order to select

parameters appropriately]?, ?]. ADLIM provides "built-in" constraints, such as inequality.

Additionally, all of the procedures for evaluating static predicates are implemented as con-

straints. That is, the set of possible values for each argument is restricted based on the other

arguments. It is useflfl to know what arguments will be determined if singleton values are

provided for other arguments. We use the predicate bound to represent that the value(s) of

an argument are determined. For example, we can write

contains-line(s, out) A bound(out) _bound(s)

to represent that once the output out is known, every line of text in out can be determined.

By definition, the return value of a function (or the boolean value of a relation) will be bound

if all its arguments are bound. Additionally, by convention, the last argument of a static

predicate is the data being described. If that argument is bound then all other arguments

will be bound, ms in the above example. This can, however, be overridden to capture binding

patterns. Binding patterns are used to require particular arguments to be specified. For

example, consider the predicate contains(s, out), meaning out contains s as a substring. It

is possible to list all substrings of out once the value of out is known, but it would not be

practical.

Additionally, unary constraints can be associated with types. For example, a Unix file-

name can be any non-empty string that does not contain the character "/." This constraint

can be represented by the regular expression "-]/'] _".

4.3 Example

Stlpposeplot is a graysca[,,imagecorrespondingto an elevation mapof the San Francisco
13;W Area. Let xProj an(l yProj 1)e linear 5m(-tions rnapping the x and y cooMinates of the

image to the correspomling longitude, latitude coordinates. Let hProj be a linear flmction

mapping elevation to pixel values in the image, where lower (blacker) values correspond to

h)wer elevations. Let elewttion(:c, y, w, h) be a fluent function returning the average elevation

over the w by h square centered at x, y. The metadata description of this plot wouht look
like

xSize(plot) = XMAX AySize(plot) = YMAX A

V:c, Y: natural, el: real

:v < XMAX Ay < YMAX A el = elevation(xProj(x), yProj(y), XRES, YRES)

value(x, y, plot) = hProj(el)

where words in ALL CAPS are constants. Note that whereas the description of ls quantified

over lines of text in the output, this description quantifies over the pixels. It would almost

never be desireable to extract the information associated with each pixel, but it is useful

to describe the file in terms of what each pixel represents, since image-processing programs
typically operate on pixels.

5 Filters

A filter is an action that transforms data. A filter has one or more inputs and one or more

outputs, and the outputs depend on the inputs in some way, as specified in the action effect

description. It does not modify its inputs in any way, and the outputs are always new objects.

Furthermore, a filter has no side effects. As with data-producing actions, the effects of filters

are specified using conditional effects. However, since filters don't produce information, the

LHS cannot refer to tile state of the world, but only to the input data. Since filters don't

affect tile world, the RHS also cannot refer to the state of the world, only output data. Thus,

both the LHS and the RHS of effects are specified with static predicates.

For example, the Unix grep command outputs the lines of text appearing in its input

that contain text matching a given regular expression. For example, "grep .ps$" outputs

all strings from its input ending in ".ps":

Vs: string contains-line(s, input) A matches(s, ". ps$") -+ contains-line(s, out-
put)

Given this description, and the description of ls, it is easy to see that the output of"ls

/papers I grep .ps$" (directing the output of ls /bin to the input of grep .ps$) will

contain the names of all files in directory/bin that end in .ps.

8

5.1 Data mining

"'D._tamining" actionsextract or call attention to information that is latent in the {lata but
is not readily apparent. F,n"example, a rock-fimling algorithm might produce an olttput
that lists or highlights t_robablerocks in an image. The information must havebeen in the
data all ahmg,but it was"'hid_len."We representhid&m propertiesof the data using static
predicates that _1onot haveconstraints (extraction proce_lures)associatedwith them. For
example, we might representpixels correspondingto rocks in an imageusing the predicate
rockPixel. A data mining action is then representedasa filter that maps from imperceptible
static predicateslike rockPixd to perceptibleones.

5.2 Example

Figure 1showsadataflow plan that includesthe programcompose,to composered,greenand
blue monochromeimagesinto a color image. Hereweshowa similar program, HSVcompose,
which does the samething, but usingan HSV (hue,saturation, value) representationof the
color. The inputs are three valuemaps, which are essentially monochrome images containing

the hues, saturations and values that are to be combined. The output is a colormap, whose

pixel values are numbers that can be also represented as RGB or HSV triples. The function

HSVcolor returns the corresponding color value for a given h,s,v triple.

action

input

output

precond

forall

effect

HSVcompose()

hue, sat, vM: valuemap

HSVout: colormap

xSize(hue) = xSize(sat) A xSize(hue) = xSize(val) A

ySize(hue) = ySize(sat) A ySize(hue) = ySize(val)

x, y: naturalNumber, h, s, v: pixelValue

xSize(HSVout) = xSize(h,ue) A ySize(HSVout) = ySize(hue) A

(x < xSize(hue) A y < ySize(hue) A value(x, g, hue) = h A

value(x, y, sat)= s A value(x, y, val)= v

-+ color(x, y, HSVout) = HSVcolor(h, s, v))

6 Other actions

6.1 Data delivery

Recall that a component of metadata is the specification of where the data reside. It is not

sufiqcient to produce the data product; the agent must also do something with it, such as

store it in a file, print it, or deliver it _ email. A data delivery action is one that takes one or

more inputs amt changes the state of the world to produce some physical embodiment of the

data. Again, we use conditional effects. The LHS refers to the data, and thus is expressed

using static predicates. The RHS refers to the state of the world, and thus is expressed using

fluents. The delivery of data also involves the creation of new objects in the world, such as

files and printouts. We indicate the creation of a new object using the keyword new. For

example, the action of saving a file with the pathname "data. out" would have an effect like

9

new]: [ih, contents(f) -- in4mt A pathname(f) data.out

_F]l(,l'(" iS [|() L[[S, sin(:(' th(' a(:ti(m un(:()n(litiona,[ly saves its [npltt.

6.2 Data construction

Not all (tata-prodltcing actions return infi)rmation about tile world. Here's an action that

.just creates a value map of a specified size and fills it with a specified value.

action makeConstant(c: pixelVahm, width, height: natural_lmber)

output

forall

effect

MCout: valueMap

l:, y: naturalNumber

xSize(MCout) = width A ySize(MCout)= height A

(x < width Ay < height --+ value(x, y, MCout) = c)

6.3 Causal actions

It is also possible to specify actions that unconditionally change the world, just as in other

actions languages. Such actions can have no inputs or outputs.

7 Information gathering

Most data-processing plans pass data directly from one action to another, without any

requirement for the agent to "know" the contents. However, there are cases in which the

agent must explicitly gather information in support of planning, to determine the value of a

parameter to an action or to make a decision.

In SADL, it is straightforward for an agent to determine what it "knows" as a result of

executing actions, since these facts are expressed directly as observe effects and are inserted

into the agent's knowledge base. In ADLIM, information gathering requires two steps: (1)

finding or constructing a data file that contains the desired information and (2) extracting
the information from the file.

7.1 The information contained in data

We first turn to the question of what information is contained in data described by a given

metadata expression. We have described metadata as a mapping from information to the way

that information is encoded in the data. To extract information from data, it is necessary

to run that mapping backward: given the bits and bytes of a data file, determine what

information is contained therein. The limited completeness assumption discussed above this

r_verse mapping possible. For example, in the case of the output of ls /bin, we assume

that every occurance of contains-line is reflected by some metadata explanation, and since

the only explanation of contains-line provided by ls is that the string is the name of a file

in /bin, it must be the case that every line of the output is the name of a file in /bin.

10

lntllitiw,ly, a _lata sourc_ (such as ls /bin) I)rovi_h's information ab.ltt particlllar at-

trib,ttes (e.g., name) of members of some set (e.g., files in /bin). The set memb,'.rship is

_lefine_l by the entire L[-[S expression. For example, Is /bin lists the. names of all files in

/bin that have names (which happens 1;o be all of them). Similarly, since only objects sat-

isfying the LHS will be listed, everything in the LHS will be known to be true of objects

that are liste_[. For example, it will be known that every file listed in the output is in the

directory /bin, even though /bin itself does not appear in the output.

However, it is still possible for an attribute to restrict the set membership without having

its value known for members of the set. For example, consid'e'r a program that Iist, s the

pathname of every file larger than a gigabyte (GB) to the output out:

Vf, n, s (pathname(f) = n) A (size(f) = s) A(s > 10 _) -+ contains-line(n, out)

Here, size is used to restrict the membership, but the size of the files is not listed in out.

All that will be known about the size of files listed in out is that it is greater than one GB.

As this example reveals, one way an attribute can be unknown is if a variable from that

attribute appears in the LHS but not in the RHS. In this case, that variable is s. Thus,

size(f), which is specified in terms of s, will remain unknown. There is one other way that

information about attributes can be missing from the data: if the LHS is disjunctive (or

equivalently, the Same RHS appears in multiple metadata rules). For example, if we have

the following expressions

gf pathname(f) = n A parent.dir(f) =/'bin --+ contains-line(n, out)

gf pathname(f) = n A parent.dir(f) =/baz + contains-line(n, out)

then out will contain the names of files in /bin and /baz, so the only thing that will be

known about a string appearing in out is that it is either the name of a file in /bin or the

name of a file in /baz. ADLIM does not support such disjunctive world knowledge, so we

will only consider cases in which the LHS is conjunctive.

7.2 Local completeness

Such information about all members of a set is called Local Closed-World (LCW) or Local

Completeness (LC) information, which was introduced by [?. ?] and extended by [71 and [?l.

We will describe the formulation of LC from the Razor system [?], since that is the most

general of the three, and also the closest to our metadata representation.

A local completeness statement in [?] is expressed as a horn clause, where the head is

specified using a ._'ite relation., which denotes the tuple of values returned by a given site

or database query, and the _ail is specified using world relations, which describe the tuples

returned in terms of a site-independent ontology. World relations are essentially what we

call fluents, and site relations are similar to our static predicates. For example, in [?1.

[MDBCAST(M_, A) "1:=actor-in(M, R, A) A year-of(M,Y) A (Y _<1996)

11

isIIs_'_lt:)rel.,r_,:entthe st:a,telnent,that th,_'[n_ern_¢Movh, Da,talmse ([MDB) liststhe actors

_f ,tl[movies ma_lq' before I997). [blDBCAST iS a site rebtt, ion, _lescribing what tuples the

_lm'ry to IMDB re{,tU'tlS, atll.,[the other relations are worl_l relations. Although the year, Y,

is Ilsecl t_ limit the scope of t,he LC stat_mw.nt, it is not retllrne_[by the qltery. This example

is essentially the same as the examph; above, of a command the returns all files above one
GB in size.

LC can also be used to state that one site contains all the information contained in

another, by including site relations in the body of the LC statement. This sort of metadata

couht also be expressed in ADLIM. In fact, that is essentially wlrgt the description of a filter

is. For example, from the description of grep, we can conclude that the input subsumes the

output.

ADLIM metadata expressions are strictly more expressive than LC. Any LC statement

could be represented as a metadata rule by introducing a static predicate corresponding to

the site predicate, where the procedure for evaluating it involves a database query. Some

differerences are:

1. The site descriptions in [?] do not concern themselves with the representation of filters,

since filters are unnecessary in pure information-integration domains.

. Although site relations are somewhat analagous to static predicates in ADLIM, they are

not the same thing. Static predicates are site-independent and capture the information

implicit in a wrapper in a system like Razor. Site relations are site-dependent.

3. The data description in ADLIM rules can be arbitrarily complex, whereas LC statements

only allow one to specify the tuples returned by a site.

8 Reasoning about plans

We have implemented a planner that supports a large subset of the Adlim language, and we

are in the process of improving it, both in functionality and in efficiency. A discussion of the

planner is beyond the scope of this paper, but here we briefly discuss how planning can be

done using Adlim, and we show a concrete example.

A planning problem is a triple -_ I, A, P >-, where :Z"is a specification of the initial state,

including the agent's metadata database, A is a description of the actions available, in the

form of a list of action schemas, and l" is a goal description, which may be a metadata

specification of desired data. The purpose of planning is to generate a plan from the actions

in A that results in P being satisfied if it is executed in a state satisfying [.

A plan is a triple --<A, O, B >--, whiere A is a set of action schemas, O is seit of ordering

constraints over A, and B is a set of bindings on variables in A, including parameter as-

signments anti assignments of outputs to inputs. It is the latter that makes plans serve as

dataflow programs. All inputs must be bound to either the output of an earlier action or

some data file for which there is a metadata description in [, and not input may be bound

to multiple outputs.

Since a goal is a metadata expression, it h_ a LHS, which refers to the initial state (or

earlier), and a tRHS, which refers to the final state. Planning can be done using regression,

12

in which the RIIS is regrosse_l 13ackwar_l in time. until the initial state l)l,ls the LI-[S _'ntail

the RHS. Or it can be _[(m(, using progression, in which the curr, mt stat,' an,l the LI-tS are

progress_,_l forwar_l in time until they entail the RHS. Sine,, tlw LHS specifies tim information

that is desired, it can provi_te substantial guidance to the search.

8.1 Example

We will show an example of planning by goal regression. Let's return to the elevation map

of the San Francisco Bay, discussed previously. Suppose we wa_i"t to produce a color image

identical to this image, except that pixel values corresponding to points below sea level are

blue - darker blue corresponding to greater depth. We can best describe this goal using an

HSV (hue, saturation, value) representation of the color. All points should have the same

value (brightness) as the original elevation map. Points above sea level should have zero

saturation (gray pixels). Points below sea level should have a hue of blue and maximum
saturation.

Vx, y : naturalNumber, h, s, v: pixelValue, elev: real

(x < XMAX A y < YMAX A elev = elevation(xProj(x), yProj(y), XRES, YRES)) --+

color(x, y, map) = HSVcolor(h, s, hProj(elev)) A (eIev > 0 _ s = O) A

(elev _< 0 --+ s = MAXVALUE Ah = BLUE)

The goal does not specify the hue for pixels corresponding to points above sea level, since

the hue is irrelevant if the saturation is zero. This goal can be solved by using HSVcompose,

where the value map is the elevation map, the hue map is a solid BLUE, and the saturation

map is the result of thresholding the elevation map, such that values below zero elevation

correspond to MAXVALUE pixels and values above correspond to zero. If we regress the

goal through HSVcompose, with the I/O assignment map = HSVout, we get a new goal,

in which color(x, y, map) = HSVcolor(h, s, hProj(elev)) is deleted (since it is satisfied by

SSVcolor), and the preconditions of nSVcolor (underlined) are added.

x < XMAX A y < YMAX A elev = elevation(xProj(x), yProj(y), XRES, YRES) -+

x$ize(hue) = xSize(sat) = xSize(val_ A ySize(h'ue) =_(aat) = ySize v(va_ A

x < xSize(hue) /', y < ySize(hue) A

value(z, y. hue) = h A valueJ_x, y, .sat) = s A value[z_.2lLval) = hProj__

(elev > 0 -4 s = O) A (elev _< 0.4s=MAXVALUEAh=BLUE)

We need an action to produce a threshold map corresponding to sea level. The arguments

are the threshold value and the values to assign to pixels that that fall below and above the
threshold.

action

input

output

forall

effect

threshold(thresh, below, above: pixelValue)

THin: valueMap

THe,at: vahmMap

:c, y: naturalNumber, v: pixelValue

xSize(THout) = xSize(THin) A ySize(THo,Lt) = ySize(rHin) A

13

xSiz,,(Tffi,_.) /x .q .ySize(Trim) At, : wdu,,(:r, Y. THIn)

(t, <_dm,sh. -4 val,u,_(J:, y, Tf[o't#,,)- below) A

(v th,'e.sh -4 v;d,,,,(.r, U, THo,#.) -- d,,,,,e))

We can th,,n regress the above goal through threshold(hPro.j(0), MAXVALUE, 0), with

[.O assignment .sat = THout. xSize(.sat), ySize(sat) and value(z, Y, sag) are deleted, and

the non-redun_lant preconditions of threshold (underlined) are added.

x .- XMAX A y :: YMAX A elev = elevation(xProj(:r), yP.mj(y), XRES, YRES) -4

xSize(hue) = xSize(THin) = xSize(vaI) AySize(hue) = ySize(THin) = ySize(val) A

:r. _< xSize(hue) A y < ySize(hue) A v' = value(x, V, THin) A

value(z, Y, hue) = h A value(z V, val) = hProj(elev) A

(elev > 0 --+ v' > hProj(0)) A(elev _< 0 -+ v' < hProj(0) Ah = BLUE)

Regressing through makeConstant(BLUE, XMAX, YMAX) with the I/O assignment hue =

MCout, value(s, y, hue) = h, a: < xSize(hue), y < ySize(hue) and h = BLUE are satisfied

and we get

x < XMAX ,'_ y < YMAX A elev = elevation(xProj(z), yProj(y), XRES, YRES)

XMAX = xSize(THin) = xSize(val) AYMAX = ySize(THin) = ySize(val) A

value(z, 9, val) = hProj(elev) A z < XMAX A y < YMAXA v' = value(z, y, THin) A

(elev > 0 -4 v' > hProj(0)) A(elev <_ 0 -+ v' <_ hProj(0))

Matching against the initial state with the I,/O assignment THin = plot and val = plot,

z < XMAX A y < YMAX A elev = elevation(xProj(x), yProj(y), XRES, YRES) -+

x < XMAX A y < YMAX Aelev = elevation(xProj(:r.), yP_roj(y). XRES, YRES) A

elev > 0 -+ hProj(elev) > hProj(0) A

elev <_ 0 _ hProi(elev) <_ hProj(0)

The first three terms on the RHS are entailed by the LHS. The rest follows from the fact

that hProj is an increasing linear function.

9 Conclusions

There are a surprising number of interesting representational problems that arise when rep-

resenting and re_oning about metadata. Constraint reasoning is complicated by the fact

that some expressions contain variables whose values are unknown and universal quantifi-

cation over unknown universes. Constraint re_oning systems typically deal with variables

of known, fixed domains. "Philisophical" problems like the Identity Problem come up reg-

ularly in this domain (and indeed many softbot domains). These problems are far from

insurnmuntablc,, 1)_t they do require some thought on the part of the domain &.,signer.

14

